What are the application of Schrodinger wave equation for a par ticle in a potential well of infinite depth engineering physics

The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we solve previous year question papers for you.
See Our team
Wondering how we keep quality?
Got unsolved questions?

Ask Questions
Engineering-Physics-06PHY12--BE-I-Semester--VTU-Belagaum-Unit-1-Modern-physics-->View question

What are the application of Schrodinger wave equation for a par ticle in a potential well of infinite depth ?-engineering physics

engineering physics


Taged users:

Be first to like this question

Be first to dislike this question

Talk about thisDelete|Like|Dislike|


Consider one dimensional closed box of width L. A particle of mass ‘m’ is moving in a one-dimensional region along X-axis specified by the limits x=0 and x=L as shown in fig. The potential energy of particle inside the box is zero and infinity elsewhere.

I.e Potential energy V(x) is of the form

V(x) = {o; if o<x<L

∞: elsewhere

The one-dimensional time independent Schrodinger wave equation is given by

d2ψ/dx2+ 2m/Ћ2[E-V] ψ=0                                             (1)

Here we have changed partial derivatives in to exact because equation now contains only one variable i.e x-Co-ordinate. Inside the box V(x) =0

Therefore   the Schrodinger equation in this region becomes

d2/ψ/dx2+ 2m/Ћ2Eψ=0

Or                 d2ψ/dx2+ K2ψ=0                                          (2)

Where                       k=    2mE/Ћ(3)

K is called the Propagation constant of the wave associated with particle and it has dimensions reciprocal of length.

he general solution of eq (2) is

Ψ=A sin Kx + B cos K x                                   (4)

Where A and B are arbitrary conditions and these will be determined by the boundary conditions.

(ii) Boundary Conditions

The particle will always remain inside the box because of infinite potential barrier at the walls. So the probability of finding the particle outside the box is zero i.e.ψx=0 outside the box.

We know that the wave function must be continuous at the boundaries of potential well at x=0 and x=L, i.e.

Ψ(x)=0 at x=0                                            (5)

Ψ(x)=0 at x= L                                           (6)

These equations are known as Boundary conditions.

(iii) Determination of Energy of Particle

Apply Boundary condition of eq.(5) to eq.(4)

0=A sin (X*0) +B cos (K*0)

0= 0+B*1

B=0                                                             (7)

Therefore eq.(4) becomes

Ψ(x) = A sin Kx                                    (8)

Applying the boundary condition of eq.(6) to eq.(8) ,we have

0=A sin KL

Sin KL=0


K=nπ/L                                                                       (9)

Where    n= 1, 2, 3 – – –

A Cannot be zero in eq. (9) because then both A and B would be zero. This will give a zero wave function every where which means particle is not inside the box.


Be first to like this answer

Be first to dislike this answer
Talk about this|Once you have earned teacher badge you can edit this questionDelete|Like|Dislike|

Can you help us to add better answer here? Please see this

Not the answer you're looking for? Browse other questions from this Question paper or ask your own question.

Join eduladder!