FULL STACK CODING PROGRAM

JOIN OUR PROGRAM AND BUILD YOUR CAREER IN TECH WITH EDULADDER.


NEW JOINEES WILL RECIVE CRYPTO WORTH OF RS 5000/-.


WHITE PAPER APPLY NOW HERE

Real Problems! Real Experts!

An unparalleled, New approach On creative thinking and problem solving.


The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions

CE-2403-BASICS-OF-DYNAMICS-AND-ASEISMIC-DESIGN-->View question

Explain Base biased method with necessary equations.

xplain Base biased method with necessary equations.


Asked On2017-06-26 12:55:28 by:tarun101

Taged users:
Fututron

Likes:
Be first to like this question

Dislikes:
Be first to dislike this question
Talk about this  Like  Dislike
View all questions
Answers

One way to bias a BJT transistor is a method called base bias.

Base bias the simplest way to bias a BJT transistor. Base bias ensures that the voltage fed to the base, VBB, is the correct voltage, which then supplies the correct current so that the BJT has enough base current to switch the transistor on.

Base Bias Voltage/Current Calculations

When using any biasing technique, calculations must be made of the various voltages and currents through a BJT transistor. Or else, it's impossible to tell whether the voltage and current values are correct or not.

The first calculation we will make is for the base current IB.

The base current can be found by dividing the voltage across resistor RB by the value of RB. This is shown below:

IB= (VBB - VBE)/RB

Since the voltage drop across a silicon junction is 0.7V, the value of VBE=0.7V. Therefore, IB equals:

IB= (VBB - VBE)/RB= (5v - 0.7v)/56kΩ= 76.78µA

The collector current IC can be calculated next:

ICdc x IB= 100 x 76.78µA≈ 7.68mA

With IC then known, the collector-emitter voltage, VCE can be calculated. This is shown below:

VCE= VCC - IC x RC= 15v - (7.68mA x 1KΩ)= 7.32v 

Base bias can also be done with a single supply voltage, VCC, with VBB omitted. So instead of using VBB in calculations, you would just use VCC instead. The result of the calculatiosn are still the same, though.


Answerd on:2017-06-28 Answerd By:13priya

Likes:
Be first to like this answer

Dislikes:
Be first to dislike this answer
Talk about this  Like  Dislike

You might like this video:Watch more here

Watch more videos from this user Here

Learn how to upload a video over here



Lets together make the web is a better place

We made eduladder by keeping the ideology of building a supermarket of all the educational material available under one roof. We are doing it with the help of individual contributors like you, interns and employees. So the resources you are looking for can be easily available and accessible also with the freedom of remix reuse and reshare our content under the terms of creative commons license with attribution required close.

You can also contribute to our vision of "Helping student to pass any exams" with these.
Answer a question: You can answer the questions not yet answered in eduladder.How to answer a question
Career: Work or do your internship with us.Work with us
Create a video: You can teach anything and everything each video should be less than five minutes should cover the idea less than five min.How to upload a video on eduladder