WIN A SCHOLARSHIP OF 10000!

AND BUILD YOUR CAREER IN TECH WITH EDULADDER.


APPLY NOW HERE JOIN FREE WEBINAR

An unparalleled, New approach On creative thinking and problem solving.


The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions


You are here:Open notes-->Anna-University-->CE-2403-BASICS-OF-DYNAMICS-AND-ASEISMIC-DESIGN

CE 2403 BASICS OF DYNAMICS AND ASEISMIC DESIGN

How to study this subject


OBJECTIVE:
The main objective of this course is to introduce to the student the phenomena of earthquakes,
the process, measurements and the factors that affect the design of structures in seismic areas.
This objective is achieved through imparting rudiments of theory of vibrations necessary to
understand and analyse the dynamic forces caused by earthquakes and structures. Further, the
student is also taught the codal provisions as well as the aseismic design methodology.
UNIT I THEORY OF VIBRATIONS 9
Concept of inertia and damping – Types of Damping – Difference between static forces and
dynamic excitation – Degrees of freedom – SDOF idealisation – Equations of motion of SDOF
system for mass as well as base excitation – Free vibration of SDOF system – Response to
harmonic excitation – Impulse and response to unit impulse – Duhamel integral
UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM 9
Two degree of freedom system – Normal modes of vibration – Natural frequencies - Mode
shapes - Introduction to MDOF systems – Decoupling of equations of motion – Concept of
mode superposition (No derivations).
UNIT III ELEMENTS OF SEISMOLOGY 9
Causes of Earthquake – Geological faults – Tectonic plate theory – Elastic rebound – Epicentre
– Hypocentre – Primary, shear and Raleigh waves – Seismogram – Magnitude and intensity of
earthquakes – Magnitude and Intensity scales – Spectral Acceleration - Information on some
disastrous earthquakes
UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE 9
Response and design spectra – Design earthquake – concept of peak acceleration – Site
specific response spectrum – Effect of soil properties and damping – Liquefaction of soils –
Importance of ductility – Methods of introducing ductility into RC structures.
UNIT V DESIGN METHODOLOGY 9
IS 1893, IS 13920 and IS 4326 – Codal provisions – Design as per the codes – Base isolation
techniques – Vibration control measures – Important points in mitigating effects of earthquake
on structures.
TOTAL: 45 PERIODS
TEXT BOOKS
1. Chopra, A.K., “Dynamics of Structures – Theory and Applications to Earthquake
 Engineering”, Second Edition, Pearson Education, 2003.
REFERENCES
1. Biggs, J.M., “Introduction to Structural Dynamics”, McGraw–Hill Book Co., N.Y., 1964
2. Dowrick, D.J., “Earthquake Resistant Design”, John Wiley & Sons, London, 1977
3. Paz, M., “Structural Dynamics – Theory & Computation”, CSB Publishers & Distributors,
 Shahdara, Delhi, 1985
4. NPEEE Publications


Official Notes


Add contents here

Notes from other sources


Add contents here

Model question papers


Add contents here

Previous year question papers


Add contents here

Useful links


Add contents here

Editors




Tool box

Edit this note | Upvote | Down vote | Questions

You might like this video:Watch more here

Watch more videos from this user Here

Learn how to upload a video over here