We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

The ELADR token was designed to incentivize and reward community members as a proof of contribution. Token holders are also granted access to EduLadder.com premium features as well as associated ELADR token enabled apps.

WHITE PAPER Buy Now

Real Problems! Real Experts!

Join Our Telegram Channel !


The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions
ELADR beta version launched

We launched Anonymous immutable internet on eladr protocol

For any question or query please joinOur Telegram Channel !


Try BETA
Youtube Videohttps://www.youtube.com/watch?v=ySLPZu3Jxro

Our Github Repo
FrontEnd BackEnd

We are looking for some great and cool people to work with us. Please sent your resume to admin@eduladder.com


You are here:Open notes-->Seminar-topics-and-ppt-for-engineering-->--Setting-up-a-LAN-using-Linux

Setting up a LAN using Linux

How to study this subject



Linux is increasingly popular in the computer networking/telecommunications industry. Acquiring the Linux operating system is a relatively simple and inexpensive task since virtually all of the source code can be downloaded from several different FTP or HTTP sites on the Internet.

This seminar describes how to put together a Local Area Network (LAN) consisting of two or more computers using the Red Hat Linux 6.2 operating system. A LAN is a communications network that interconnects a variety of devices and provides a means for exchanging information among those devices. The size and scope of a LAN is usually small, covering a single building or group of buildings. In a LAN, modems and phone lines are not required, and the computers should be close enough to run a network cable between them.

For each computer that will participate in the LAN, you'll need a network interface card (NIC) to which the network cable will be attached. We will also need to assign a unique hostname and IP address to each computer in the LAN.

INTRODUCTION TO TCP/IP

2.1. INTRODUCTION

TCP/IP is the suite of protocols used by the Internet and most LANs throughout the world. In TCP/IP, every host (computer or other communications device) that is connected to the network has a unique IP address. An IP address is composed of four octets (numbers in the range of 0 to 255) separated by decimal points. The IP address is used to uniquely identify a host or computer on the LAN. For example, a computer with the hostname Morpheus could have an IP address of 192.168.7.127. we should avoid giving two or more computers the same IP address by using the range of IP addresses that are reserved for private, local area networks; this range of IP addresses usually begins with the octets 192.168.

2.2 LAN NETWORK ADDRESS

The first three octets of an IP address should be the same for all computers in the LAN. For example, if a total of 128 hosts exist in a single LAN, the IP addresses could be assigned starting with 192.168.1.x, where x represents a number in the range of 1 to 128. we could create consecutive LANs within the same company in a similar manner consisting of up to another 128 computers. Of course, you are not limited to 128 computers, as there are other ranges of IP addresses that allow you to build even larger networks.

There are different classes of networks that determine the size and total possible unique IP addresses of any given LAN. For example, a class A LAN can have over 16 million unique IP addresses. A class B LAN can have over 65,000 unique IP addresses. The size of your LAN depends on which reserved address range you use and the subnet mask associated with that range

Official Notes


Add contents here

Notes from other sources


Setting up a LAN using Linux.doc


Model question papers


Add contents here

Previous year question papers


Add contents here

Useful links


Add contents here

Editors

neenu2neenu2RajivRajiv


You might like this video:Watch more here

Watch more videos from this user Here

Learn how to upload a video over here