We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

Eladr tokens are designed to incentifised community members as a proof of contribution. Using that they can access diffrent infrastructure built on top of eladr


Using this You can,Buy courses,Reward others and exchange for real money.


WHITE PAPER Buy Now

Real Problems! Real Experts!

Join Our Telegram Channel !


The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions
ELADR beta version launched

We launched Anonymous immutable internet on eladr protocol

For any question or query please joinOur Telegram Channel !


Try BETA
Youtube Videohttps://www.youtube.com/watch?v=ySLPZu3Jxro

Our Github Repo
FrontEnd BackEnd

We are looking for some great and cool people to work with us. Please sent your resume to admin@eduladder.com


You are here:Open notes-->Seminar-topics-and-ppt-for-engineering-->ipv6

ipv6

How to study this subject


Each machine on the net is given a 32-bit address. With 32 bits, a maximum of about four billion addresses is possible. Though this is a large a number, soon the Internet will have TV sets, and even pizza machines connected to it, and since each of them must have an IP address, this number becomes too small. The revision of IPv4 was taken up mainly to resolve the address problem, but in the course of refinements, several other features were also added to make it suitable for the next generation Internet. This version was initially named IPng (IP next generation) and is now officially known as IPv6. IPv6 supports 128-bit addresses, the source address and the destination address, each being, 128 bits long. IPv5 a minor variation of IPv4 is presently running on some routers

Presently, most routers run software that support only IPv4. To switch over to IPv6 overnight is an impossible task and the transition is likely to take a very long time. However to speed up the transition, an IPv4 compatible IPv6 addressing scheme has been worked out. Major vendors are now writing softwares for various computing environments to support IPv6 functionality. Incidentally, software development for different operating systems and router platforms will offer major jobs opportunities in coming years


IPv6 is sometimes also called the Next Generation Internet Protocol or IPng. IPv6 was recommended by the IPng Area Directors of the Internet Engineering Task Force at the Toronto IETF meeting on July 25, 1994 in RFC 1752, The Recommendation for the IP Next Generation Protocol. The recommendation was approved by the Internet Engineering Steering Group and made a Proposed Standard on November 17,1994. The core set of IPv6 protocols were made an IETF Draft Standard on August 10, 1998.

Internet Protocol Version 6 is abbreviated to IPv6 (where the "6" refers to it being assigned version number 6). The previous version of the Internet Protocol is version 4

Official Notes


Add contents here

Notes from other sources

IPv6.doc


Model question papers


Add contents here

Previous year question papers


Add contents here

Useful links


Add contents here

Editors

RajivRajiv


You might like this video:Watch more here

Watch more videos from this user Here

Learn how to upload a video over here