The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions


You are here:Open notes-->Seminar-topics-and-ppt-for-engineering-->--border-security-using-wireless-integrated-network-sensors

border security using wireless integrated network sensors

How to study this subject



Wireless Integrated Network Sensors (WINS) now provide a new monitoring and control capability for monitoring the borders of the country. Using this concept we can easily identify a stranger or some terrorists entering the border. The border area is divided into number of nodes. Each node is in contact with each other and with the main node. The noise produced by the foot-steps of the stranger are collected using the sensor. This sensed signal is then converted into power spectral density and the compared with reference value of our convenience. Accordingly the compared value is processed using a microprocessor, which sends appropriate signals to the main node. Thus the stranger is identified at the main node. A series of interface, signal processing, and communication systems have been implemented in micro power CMOS circuits. A micro power spectrum analyzer has been developed to enable low power operation of the entire WINS system.

Thus WINS require a Microwatt of power. But it is very cheaper when compared to other security systems such as RADAR under use. It is even used for short distance communication less than 1 Km. It produces a less amount of delay. Hence it is reasonably faster. On a global scale, WINS will permit monitoring of land, water, and air resources for environmental monitoring. On a national scale, transportation systems, and borders will be monitored for efficiency, safety, and security.

WINS opportunities depend on development of a scalable, low-cost, sensor-network architecture. Such applications require delivery of sensor information to the user at a low bit rate through low-power transceivers. Continuous sensor signal processing enables the constant monitoring of events in an environment in which short message packets would suffice. Future applications of distributed embedded processors and sensors will require vast numbers of devices. Conventional methods of sensor networking represent an impractical demand on cable installation and network bandwidth. Processing at the source would drastically reduce the financial, computational, and management burden on communication system components, networks, and human resources.
Here, we limit ourselves to a security application designed to detect and identify threats within some geographic region and report the decisions concerning the presence and nature of such threats to a remote observer via the Internet. In the context of this application, we describe the physical principles leading to consideration of dense sensor networks, outline how energy and bandwidth constraints compel a distributed and layered signal processing architecture, outline why network self-organization and reconfiguration are essential, discuss how to embed WINS nodes in the Internet, and describe a prototype platform enabling these functions, including remote Internet control and analysis of sensor-network operation.

Official Notes


Add contents here

Notes from other sources

http://www.ifet.ac.in/pages/intsymp14/TechnoVision%20%2714/papers/IT/IT01.pdf


Model question papers


Add contents here

Previous year question papers


Add contents here

Useful links


Add contents here

Editors

neenu2neenu2RajivRajiv


You might like this video:Watch more here

Watch more videos from this user Here

Learn how to upload a video and start earning here