This is designed to incentify community members as a proof of contribution token.

Using this You can,Buy courses,Reward others and exchange for real money.

WHITE PAPER COURSES

Real Problems! Real Experts!

The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we help you to solve your academic and programming questions fast.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
See Our team
Wondering how we keep quality?
Got unsolved questions?

You are here:Open notes-->Seminar-topics-and-ppt-for-engineering-->Zero-knowledge-protocol-and-proof-system

# How to study this subject

In cryptography, a zero-knowledge proof or zero-knowledge protocol is a method by which one party (the prover) can prove to another party (the verifier) that a given statement is true, without conveying any information apart from the fact that the statement is indeed true.

If proving the statement requires knowledge of some secret information on the part of the prover, the definition implies that the verifier will not be able to prove the statement in turn to anyone else, since the verifier does not possess the secret information. Notice that the statement being proved must include the assertion that the prover has such knowledge (otherwise, the statement would not be proved in zero-knowledge, since at the end of the protocol the verifier would gain the additional information that the prover has knowledge of the required secret information). If the statement consists only of the fact that the prover possesses the secret information, it is a special case known as zero-knowledge proof of knowledge, and it nicely illustrates the essence of the notion of zero-knowledge proofs: proving that one has knowledge of certain information is trivial if one is allowed to simply reveal that information; the challenge is proving that one has such knowledge without revealing the secret information or anything else.

For zero-knowledge proofs of knowledge, the protocol must necessarily require interactive input from the verifier, usually in the form of a challenge or challenges such that the responses from the prover will convince the verifier if and only if the statement is true (i.e., if the prover does have the claimed knowledge). This is clearly the case, since otherwise the verifier could record the execution of the protocol and replay it to someone else: if this were accepted by the new party as proof that the replaying party knows the secret information, then the new party's acceptance is either justified – the replayer does know the secret information – which means that the protocol leaks knowledge and is not zero-knowledge, or it is spurious – i.e. leads to a party accepting someone's proof of knowledge who does not actually possess it.

Some forms of non-interactive zero-knowledge proofs of knowledge exist, but the validity of the proof relies on computational assumptions (typically the assumptions of an ideal cryptographic hash function).

# Previous year question papers

RajivRajiv

## Tool box

Edit this note | Upvote | Down vote | Questions

### Watch more videos from this user Here

Learn how to upload a video over here