We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

Eladr tokens are designed to incentifised community members as a proof of contribution. Using that they can access diffrent infrastructure built on top of eladr

Using this You can,Buy courses,Reward others and exchange for real money.


Real Problems! Real Experts!

Join Our Telegram Channel !

The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions
ELADR beta version launched

We launched Anonymous immutable internet on eladr protocol

For any question or query please joinOur Telegram Channel !

Youtube Videohttps://www.youtube.com/watch?v=ySLPZu3Jxro

Our Github Repo
FrontEnd BackEnd

We are looking for some great and cool people to work with us. Please sent your resume to admin@eduladder.com

You are here:Open notes-->Seminar-topics-and-ppt-for-engineering-->--Chameleon-Chip

Chameleon Chip

How to study this subject

A reconfigurable processor is a microprocessor with erasable hardware that can rewire itself dynamically. This allows the chip to adapt effectively to the programming tasks demanded by the particular software they are interfacing with at any given time. Ideally, the reconfigurable processor can transform itself from a video chip to a central processing unit (CPU) to a graphics chip, for example, all optimized to allow applications to run at the highest possible speed.

These chips are like providing a "chip on demand." In practical terms, this ability can translate to immense flexibility in terms of device functions. For example, a single device could serve as both a camera and a tape recorder (among numerous other possibilities): you would simply download the desired software and the processor would reconfigure itself to optimize performance for that function. According to a recent Red Herring magazine article, that type of device versatility may be available by 2003. Reconfigurable processor chip usually contains several parallel processing computational units known as functional blocks. These functional blocks are connected in all the possible way. While reconfiguring the chip, the connections inside the functional blocks and the connections in between the functional blocks are changing.

That means when a particular software is loaded the present hardware design is erased and a new hardware design is generated by making a particular number of connections active while making others idle. This will define the optimum hardware configuration for that particular software. The key to the design is the small size of each processing element. The smallest segments of the chip can be defined with just 50 bits of software code, so the entire chip can be reprogrammed with just 50,000 bits of software description. It takes just 20 microseconds to reconfigure the entire processing array.

Reconfigurable processors are currently available from Chameleon Systems, Billions of Operations (BOPS), and PACT (Parallel Array Computing Technology). Among those only Chameleon is providing a design environment, which allows customers to convert their algorithms to hardware configuration by themselves


eConfigurable™ Technology is used for instantaneous reconfiguration. This technology reconfigures fabric in one clock cycle and increases voice/data/video channels per chip. As mentioned earlier, each Slice can be configured independently.

Loading the Background Plane from external memory requires just 3 µsec per Slice; this operation does not interfere with active processing on the Fabric.

Swapping the Background Plane into the Active Plane requires just one clock cycle. with eConfigurable Technology; the four algorithms are loaded into the entire reconfigurable processing Fabric one at a time.

2. C~SIDE Development Tools

Without the necessary software tools, no one but the inventors has been able to port software to the processors. As a result customers had to give their algorithms to developers.

With this software, Chameleon Systems are providing the ability for the customers to do the programming themselves thus keeping the secrecy of their algorithms.

The Chameleon Systems Integrated Development Environment (C~SIDE) is a complete toolkit for designing, debugging and verifying RCP designs. C~Side uses a combined C language and Verilog (Verilog HDL is a hardware description language used to design and document electronic systems) flow to map algorithms into the chip's reconfigurable processing fabric (RPF).

C~SIDE includes an optimized GNU C compiler for the ARC Processor and an optimized Verilog To Bits (V2B) synthesizer for the Reconfigurable Processing Fabric., an interactive floor planner, an instruction-set simulator and a unified debug environment for the ARC core and the RPF.

3. eBIOS™

eBIOS provides a interface between the Embedded Processor System and the Fabric. eBIOS provides resource allocation, configuration management and DMA services. The eBIOS calls are automatically generated at compile time, but can be edited for precise control of any function.

Official Notes

Add contents here

Notes from other sources

Chameleon chip.doc

Model question papers

Add contents here

Previous year question papers

Add contents here

Useful links

Add contents here