Explain the principle of operation of Kaplan turbine with the help of a neat sketch and also mention its application advantages and disadvantages
The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we solve previous year question papers for you.
See Our team
Wondering how we keep quality?
Got unsolved questions?

Ask Questions
Hey! Want to work with us? Our youtube channel See our Jd Want to apply? Do it today

Use Me  ?

New searches
MechanicalFirst-year-10EME14-->View question


Explain the principle of operation of Kaplan turbine with the help of a neat sketch and also mention its application, advantages and disadvantages.

elements of mechanical engineering.

By:prajwalamv

Taged users:
|milan-ransingh

Likes:
Be first to like this question

Dislikes:
Be first to dislike this question

Talk about thisDelete|Like|Dislike|


Answers

Theory of operation :-
Vertical Kaplan Turbine (courtesy Voith-Siemens).
The Kaplan turbine is an inward flow reaction turbine, which means that the working fluid changes pressure as it moves through the turbine and gives up its energy. Power is recovered from both the hydrostatic head and from the kinetic energy of the flowing water. The design combines features of radial and axial turbines.

The inlet is a scroll-shaped tube that wraps around the turbine's wicket gate. Water is directed tangentially through the wicket gate and spirals on to a propeller shaped runner, causing it to spin.

The outlet is a specially shaped draft tube that helps decelerate the water and recover kinetic energy.

The turbine does not need to be at the lowest point of water flow as long as the draft tube remains full of water. A higher turbine location, however, increases the suction that is imparted on the turbine blades by the draft tube. The resulting pressure drop may lead to cavitation.

Variable geometry of the wicket gate and turbine blades allow efficient operation for a range of flow conditions. Kaplan turbine efficiencies are typically over 90%, but may be lower in very low head applications.

Current areas of research include CFD driven efficiency improvements and new designs that raise survival rates of fish passing through.

Because the propeller blades are rotated on high-pressure hydraulic oil bearings, a critical element of Kaplan design is to maintain a positive seal to prevent emission of oil into the waterway. Discharge of oil into rivers is not desirable because of the waste of resources and resulting ecological damage.

Applications :-

Viktor Kaplan Turbine Technisches Museum Wien
Kaplan turbines are widely used throughout the world for electrical power production. They cover the lowest head hydro sites and are especially suited for high flow conditions.

Inexpensive micro turbines on the Kaplan turbine model are manufactured for individual power production designed for 3 m of head which can work with as little as 0.3 m of head at a highly reduced performance provided sufficient water flow.

Large Kaplan turbines are individually designed for each site to operate at the highest possible efficiency, typically over 90%. They are very expensive to design, manufacture and install, but operate for decades.


satyashiromani

Likes:
|Vishu-vashistha

Dislikes:
Be first to dislike this answer
Talk about this|Once you have earned teacher badge you can edit this questionDelete|Like|Dislike|
------------------------------------

Can you help us to add better answer here? Please see this



Not the answer you're looking for? Browse other questions from this Question paper or ask your own question.

Join eduladder!