A linear time invariant LTI system with the transfer function
The Eduladder is a community of students, teachers, and programmers just interested to make you pass any exams. So we solve previous year question papers for you.
See Our team
Wondering how we keep quality?
Got unsolved questions?

Ask Questions
Hey! Want to work with us? Our youtube channel See our Jd Want to apply? Do it today

Use Me  ?

New searches
GATE-Electronics-and-Communication-Engineering-Question-Paper-2013-download-->View question


A linear time invariant (LTI) system with the transfer function


is connected in unity feedback configuration as shown in the figure.

For the closed loop system shown, the root locus for intersects the imaginary axis for K = 1.5. The closed loop system is stable for 
(A) K >1.5 
 (B) 1< K <1.5 
 (D) 0< K <1 
 (D) no positive value of K


By:aksingh1818

Taged users:
|aksingh1818|Abhishek|deepuckraj|Jessika-K|ahmed-elgohary|Shikhil|Purnima|satyashiromani|13priya|RahulR|naveen-kumar-m|Razeen-raaz|sucharitha-d||Aparna-Dasgupta|rathinlz04|Akhil-Raj|maverick-ashwin|Ravi-gowda|arunwebber|eduladder|Abdul-Wajid|neenu2|Johnny|salazar|ratika|pallaviaithaln|Rajiv|Raju-bhai|Asgar-Ali

Likes:
|aksingh1818|Oshal-Borkar

Dislikes:
Be first to dislike this question

Talk about thisDelete|Like|Dislike|


Answers

   (A) K >1.5                                                                                              
                                                                                                           
                                                                                               


Oshal-Borkar

Likes:
Be first to like this answer

Dislikes:
Be first to dislike this answer
Talk about this|Once you have earned teacher badge you can edit this questionDelete|Like|Dislike|
------------------------------------

Can you help us to add better answer here? Please see this

Loading...


Not the answer you're looking for? Browse other questions from this Question paper or ask your own question.

Join eduladder!